1127 update to latest

This commit is contained in:
FelixChan
2025-11-27 15:44:17 +08:00
parent e16c84aab2
commit a34d39430e
153 changed files with 25705 additions and 53 deletions

View File

@ -1,7 +1,9 @@
defaults:
# - nn_params: nb8_embSum_NMT
# - nn_params: remi8
- nn_params: oct8_embSum_diff_t2m_150M_pretrainingv2
# - nn_params: oct8_embSum_diff_t2m_300M_pretrainingv3
# - nn_params: oct8_embSum_diff_t2m_150M_pretrainingv2
- nn_params: oct8_embSum_har_t2m_600M_pretrainingv3
# - nn_params: nb8_embSum_diff_t2m_600M_pretrainingv2
# - nn_params: nb8_embSum_diff_t2m_600M_finetunningv2
# - nn_params: nb8_embSum_subPararell
@ -15,7 +17,7 @@ defaults:
# - nn_params: remi8_main12_head_16_dim512
# - nn_params: nb5_embSum_diff_main12head16dim768_sub3
dataset: Melody # Pop1k7, Pop909, SOD, LakhClean,PretrainingDataset FinetuneDataset
dataset: msmidi # Pop1k7, Pop909, SOD, LakhClean,PretrainingDataset FinetuneDataset
captions_path: dataset/midicaps/train_set.json
# dataset: SymphonyNet_Dataset # Pop1k7, Pop909, SOD, LakhClean
@ -23,28 +25,28 @@ captions_path: dataset/midicaps/train_set.json
use_ddp: True # True, False | distributed data parallel
use_fp16: True # True, False | mixed precision training
use_diff: True # True,use diffusion in subdecoder
use_diff: False # True,use diffusion in subdecoder
diff_steps: 8 # number of diffusion steps
use_dispLoss: True
use_dispLoss: False
lambda_weight: 0.5
tau: 0.5
train_params:
device: cuda
batch_size: 10
batch_size: 9
grad_clip: 1.0
num_iter: 300000 # total number of iterations
num_cycles_for_inference: 10 # number of cycles for inference, iterations_per_validation_cycle * num_cycles_for_inference
num_cycles_for_model_checkpoint: 1 # number of cycles for model checkpoint, iterations_per_validation_cycle * num_cycles_for_model_checkpoint
iterations_per_training_cycle: 10 # number of iterations for logging training loss
iterations_per_validation_cycle: 3000 # number of iterations for validation process
input_length: 3072 # input sequence length3072
input_length: 2048 # input sequence length3072
# you can use focal loss, it it's not used, set focal_gamma to 0
focal_alpha: 1
focal_gamma: 0
# learning rate scheduler: 'cosinelr', 'cosineannealingwarmuprestarts', 'not-using', please check train_utils.py for more details
scheduler : cosinelr
initial_lr: 0.00001
initial_lr: 0.0003
decay_step_rate: 0.8 # means it will reach its lowest point at decay_step_rate * total_num_iter
num_steps_per_cycle: 20000 # number of steps per cycle for 'cosineannealingwarmuprestarts'
warmup_steps: 2000 #number of warmup steps