1127 update to latest

This commit is contained in:
FelixChan
2025-11-27 15:44:17 +08:00
parent e16c84aab2
commit a34d39430e
153 changed files with 25705 additions and 53 deletions

192
dllm/examples/dream/sft.py Normal file
View File

@ -0,0 +1,192 @@
"""
Local users
------------
- 1 GPU (4bit quant & LoRA, useful for testing):
accelerate launch \
--config_file scripts/accelerate_configs/ddp.yaml --num_processes 1 \
examples/dream/sft.py \
--load_in_4bit True --lora True
- 8 GPUs (FSDP):
accelerate launch \
--config_file scripts/accelerate_configs/fsdp.yaml \
examples/dream/sft.py
Slurm users
# Note: run `mkdir logs` before running sbatch; and adjust
# `partition` and `quotatype` in `scripts/train.slurm.sh` for your cluster.
------------
- 1 Node, 8 GPUs (FSDP):
sbatch --gres=gpu:1 scripts/train.slurm.sh \
--accelerate_config "fsdp" \
--script_path "examples/dream/sft.py"
- 2 Nodes, 16 GPUs (FSDP):
sbatch --nodes=2 --gres=gpu:8 scripts/train.slurm.sh \
--accelerate_config "fsdp" \
--script_path "examples/dream/sft.py"
"""
import os
from dataclasses import dataclass, field
from functools import partial
import transformers
import accelerate
import dllm
from dllm.pipelines import dream
logger = dllm.utils.get_default_logger(__name__)
@dataclass
class ModelArguments(dllm.utils.ModelArguments):
model_name_or_path: str = "Dream-org/Dream-v0-Base-7B"
@dataclass
class DataArguments(dllm.utils.DataArguments):
dataset_args: str = "allenai/tulu-3-sft-mixture[train:10000,test:1000]"
load_preprocessed_data: bool = False
mask_prompt_loss: bool = field(
default=True,
metadata={"help": "Whether to mask the loss on the prompt tokens"},
)
# Dream SFT specific args
perbatch_cutoff: bool = field(
default=True,
metadata={
"help": (
"Randomly pick a response length from batch and trim other responses. "
"See https://github.com/DreamLM/Dream/blob/main/src/trainer/config/sft_trainer.yaml."
)
},
)
resp_cutoff_ratio: float = field(
default=0.0,
metadata={
"help": (
"The probability of randomly cutting sequences during training. "
"See https://github.com/DreamLM/Dream/blob/main/src/trainer/config/sft_trainer.yaml."
)
},
)
@dataclass
class TrainingArguments(dllm.utils.TrainingArguments):
output_dir: str = "models/Dream-7B-SFT"
group_by_length: bool = True
# Dream SFT specific args
loss_weight_type: str = field(
default="cart[geo_p:0.3]",
metadata={
"help": (
"The loss weight type. "
"See https://github.com/DreamLM/Dream/blob/main/src/trainer/config/sft_trainer.yaml."
)
},
)
# ------------------------------------------------------------------------------
# SFT mapping function
# ------------------------------------------------------------------------------
def sft_map_fn(row, *, tokenizer, mask_prompt_loss: bool) -> dict:
"""
Build Dream SFT features from a chat-format row.
Returns:
dict with input_ids, labels, attention_mask, prompt_len
"""
prompt_tokens = tokenizer.apply_chat_template(
row["messages"][:-1], tokenize=True, add_generation_prompt=True
)
prompt_response_tokens = tokenizer.apply_chat_template(
row["messages"], tokenize=True, add_generation_prompt=False
)
labels = prompt_response_tokens.copy()
if mask_prompt_loss:
labels[: len(prompt_tokens)] = [-100] * len(prompt_tokens)
else:
# When training on all tokens, prepend a BOS token (if missing)
# so the model can predict the first token.
if prompt_response_tokens[0] != tokenizer.bos_token_id:
bos = [tokenizer.bos_token_id]
prompt_response_tokens = bos + prompt_response_tokens
prompt_tokens = bos + prompt_tokens
labels = bos + labels
labels[0] = -100 # ignore loss on BOS
return {
"input_ids": prompt_response_tokens,
"labels": labels,
"prompt_len": len(prompt_tokens),
}
def train():
# ----- Argument parsing -------------------------------------------------------
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# necessary when batch contains customized fields
training_args.remove_unused_columns = False
dllm.utils.print_args_main(model_args, data_args, training_args)
dllm.utils.initial_training_setup(model_args, data_args, training_args)
# ----- Model ------------------------------------------------------------------
model = dllm.utils.get_model(model_args=model_args)
# ----- Tokenizer --------------------------------------------------------------
tokenizer = dllm.utils.get_tokenizer(model_args=model_args)
# ----- Dataset ----------------------------------------------------------------
with accelerate.PartialState().local_main_process_first():
dataset = dllm.data.load_sft_dataset(
data_args.dataset_args,
load_preprocessed_data=data_args.load_preprocessed_data,
)
if not data_args.load_preprocessed_data:
map_fn = partial(
sft_map_fn,
tokenizer=tokenizer,
mask_prompt_loss=data_args.mask_prompt_loss,
)
dataset = dataset.map(
map_fn,
num_proc=data_args.num_proc,
desc="Mapping dataset to SFT format",
)
# truncate / filter long sequences if needed
dataset = dllm.utils.post_process_dataset(dataset, data_args)
# ----- Training --------------------------------------------------------------
accelerate.PartialState().wait_for_everyone()
logger.info("Start training...")
trainer = dream.DreamTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset["train"],
eval_dataset=dataset.get("test", None),
args=training_args,
loss_weight_type=training_args.loss_weight_type,
data_collator=dream.utils.DreamSFTCollator(
tokenizer,
return_tensors="pt",
padding=True,
perbatch_cutoff=data_args.perbatch_cutoff,
resp_cutoff_ratio=data_args.resp_cutoff_ratio,
),
)
trainer.train()
trainer.save_model(os.path.join(training_args.output_dir, "checkpoint-final"))
trainer.processing_class.save_pretrained(
os.path.join(training_args.output_dir, "checkpoint-final")
)
if __name__ == "__main__":
train()