1127 update to latest

This commit is contained in:
FelixChan
2025-11-27 15:44:17 +08:00
parent e16c84aab2
commit a34d39430e
153 changed files with 25705 additions and 53 deletions

View File

@ -0,0 +1,77 @@
# Edit Flows - BERT
> 📄 Paper: [Edit Flows: Flow Matching with Edit Operations](https://arxiv.org/abs/2506.09018)
## Warmup
In this section, we show toy examples of pretraining and SFTing [`ModernBERT-large`](https://huggingface.co/answerdotai/ModernBERT-large) on small datasets to generate text with EditFlow.
You can use any BERT model instead for example, by `--model_name_or_path "FacebookAI/roberta-large"`.
### Pretrain
To train [`ModernBERT-large`](https://huggingface.co/answerdotai/ModernBERT-large) on the [`tiny-shakespeare`](https://huggingface.co/datasets/Trelis/tiny-shakespeare) dataset, run:
```shell
PYTHONPATH=. accelerate launch --config_file scripts/accelerate_configs/ddp.yaml --num_processes 1 \
examples/editflow/bert/pt.py \
--model_name_or_path "answerdotai/ModernBERT-large" \
--dataset_args "Trelis/tiny-shakespeare" \
--text_field "Text" \
--insert_eos False \
--max_length 128 \
--num_train_epochs 20 \
--per_device_train_batch_size 64 \
--per_device_eval_batch_size 64 \
--save_steps 0.1 \
--x0_sampler "masks[length:64]" \
--output_dir "models/EditFlow/ModernBERT-large/tiny-shakespeare"
```
To run inference with the model:
```shell
PYTHONPATH=. python examples/editflow/generate.py \
--model_name_or_path "models/EditFlow/ModernBERT-large/tiny-shakespeare/checkpoint-final" \
--tau 0.01 --mask_length 64 --seed 42 --make_gif
# see `decode_trace.gif`
```
### SFT
To train [`ModernBERT-large`](https://huggingface.co/answerdotai/ModernBERT-large) on the [`alpaca`](https://huggingface.co/datasets/tatsu-lab/alpaca) dataset, run:
```shell
PYTHONPATH=. accelerate launch --config_file scripts/accelerate_configs/zero2.yaml --num_processes 8 \
examples/editflow/bert/sft.py \
--model_name_or_path "answerdotai/ModernBERT-large" \
--dataset_args "tatsu-lab/alpaca" \
--max_length 512 \
--num_train_epochs 20 \
--per_device_train_batch_size 64 \
--per_device_eval_batch_size 64 \
--save_steps 0.1 \
--x0_sampler "masks[length:64]" \
--output_dir "models/EditFlow/ModernBERT-large/alpaca"
```
To run inference with the model:
```shell
PYTHONPATH=. python examples/editflow/generate.py \
--model_name_or_path "models/EditFlow/ModernBERT-large/alpaca/checkpoint-final" \
--prompt "Could you please write a poem for me?" --tau 0.01 --mask_length 64 --seed 42 --make_gif
# see `decode_trace.gif`
```
<!-- ```shell
accelerate launch --config_file scripts/accelerate_configs/zero2.yaml --num_processes 8 \
examples/editflow/bert/sft.py \
--model_name_or_path "answerdotai/ModernBERT-large" \
--dataset_args "allenai/tulu-3-sft-mixture|HuggingFaceTB/smoltalk" \
--max_length 1024 \
--num_train_epochs 10 \
--per_device_train_batch_size 48 \
--per_device_eval_batch_size 48 \
--save_steps 0.1 \
--x0_sampler "masks[length:64]" \
--output_dir "models/EditFlow/ModernBERT-large/tulu-3-smoltalk/epochs-10-bs-384-len-1024"
``` -->

View File

@ -0,0 +1,48 @@
from dataclasses import dataclass
import transformers
import dllm
from examples.editflow import pt as editflow_pt
@dataclass
class ModelArguments(editflow_pt.ModelArguments):
model_name_or_path: str = "answerdotai/ModernBERT-large"
lm_head_key: str = "decoder"
@dataclass
class DataArguments(editflow_pt.DataArguments):
dataset_args: str = "Trelis/tiny-shakespeare"
text_field: str = "Text"
max_length: int = 128
streaming: bool = False
drop_tail: bool = True
insert_eos: bool = False
@dataclass
class TrainingArguments(editflow_pt.TrainingArguments):
output_dir: str = "models/EditFlow/ModernBERT-large/tiny-shakespeare"
num_train_epochs: float = 20
learning_rate: float = 3e-4
per_device_train_batch_size: int = 64
per_device_eval_batch_size: int = 64
eval_steps: float = 0.1
save_steps: float = 0.1
x0_sampler: str = "masks[length:64]"
if __name__ == "__main__":
# ----- Argument parsing -------------------------------------------------------
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
editflow_pt.train(
model_args=model_args,
data_args=data_args,
training_args=training_args,
ef_config_cls=dllm.pipelines.editflow.EditFlowModernBertConfig,
)

View File

@ -0,0 +1,44 @@
from dataclasses import dataclass
import transformers
import dllm
from examples.editflow import sft as editflow_sft
@dataclass
class ModelArguments(editflow_sft.ModelArguments):
model_name_or_path: str = "answerdotai/ModernBERT-large"
lm_head_key: str = "decoder"
@dataclass
class DataArguments(editflow_sft.DataArguments):
dataset_args: str = "tatsu-lab/alpaca"
max_length: int = 512
@dataclass
class TrainingArguments(editflow_sft.TrainingArguments):
output_dir: str = "models/EditFlow/ModernBERT-large/alpaca"
num_train_epochs: float = 20
learning_rate: float = 3e-4
per_device_train_batch_size: int = 64
per_device_eval_batch_size: int = 64
eval_steps: float = 0.1
save_steps: float = 0.1
x0_sampler: str = "masks[length:64]"
if __name__ == "__main__":
# ----- Argument parsing -------------------------------------------------------
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
editflow_sft.train(
model_args=model_args,
data_args=data_args,
training_args=training_args,
ef_config_cls=dllm.pipelines.editflow.EditFlowModernBertConfig,
)