""" Local users ------------ - 1 GPU: accelerate launch \ --config_file scripts/accelerate_configs/ddp.yaml --num_processes 1 \ examples/bert/pt.py - 8 GPUs (DDP): accelerate launch \ --config_file scripts/accelerate_configs/ddp.yaml \ examples/bert/pt.py Slurm users # Note: run `mkdir logs` before running sbatch; and adjust # `partition` and `quotatype` in `scripts/train.slurm.sh` for your cluster. ------------ - 8 GPUs (DDP): sbatch --gres=gpu:8 scripts/train.slurm.sh \ --accelerate_config "ddp" \ --script_path "examples/bert/pt.py" """ import os import functools from dataclasses import dataclass, field import transformers import accelerate import dllm logger = dllm.utils.get_default_logger(__name__) @dataclass class ModelArguments(dllm.utils.ModelArguments): model_name_or_path: str = "answerdotai/ModernBERT-large" @dataclass class DataArguments(dllm.utils.DataArguments): dataset_args: str = "Trelis/tiny-shakespeare" text_field: str = "Text" max_length: int = 128 streaming: bool = False drop_tail: bool = True insert_eos: bool = field( default=True, metadata={ "help": "False when adjacent samples from the datasets are semantically coherent." }, ) @dataclass class TrainingArguments(dllm.utils.TrainingArguments): output_dir: str = "models/ModernBERT-base/tiny-shakespeare" num_train_epochs: int = 20 learning_rate: float = 1e-4 per_device_train_batch_size: int = 64 per_device_eval_batch_size: int = 64 eval_steps: float = 0.1 save_steps: float = 0.1 def train(): # ----- Argument parsing ------------------------------------------------------- parser = transformers.HfArgumentParser( (ModelArguments, DataArguments, TrainingArguments) ) model_args, data_args, training_args = parser.parse_args_into_dataclasses() dllm.utils.print_args_main(model_args, data_args, training_args) dllm.utils.initial_training_setup(model_args, data_args, training_args) # ----- Model ------------------------------------------------------------------ model = dllm.utils.get_model(model_args=model_args) # ----- Tokenizer -------------------------------------------------------------- tokenizer = dllm.utils.get_tokenizer(model_args=model_args) # ----- Dataset ---------------------------------------------------------------- with accelerate.PartialState().local_main_process_first(): dataset = dllm.data.load_pt_dataset( data_args.dataset_args, streaming=data_args.streaming, ) dataset = dataset.map( functools.partial( dllm.utils.tokenize_and_group, tokenizer=tokenizer, text_field=data_args.text_field, seq_length=data_args.max_length, insert_eos=data_args.insert_eos, drop_tail=data_args.drop_tail, ), batched=True, remove_columns=dataset["train"].column_names, **({} if data_args.streaming else {"num_proc": data_args.num_proc}), **({} if data_args.streaming else {"desc": "Mapping dataset to PT format"}), ) if data_args.streaming: dataset = dataset.shuffle(seed=training_args.seed) # ----- Training -------------------------------------------------------------- accelerate.PartialState().wait_for_everyone() logger.info("Start training...") trainer = dllm.core.trainers.MDLMTrainer( model=model, tokenizer=tokenizer, train_dataset=dataset["train"], eval_dataset=dataset.get("test", None), args=training_args, data_collator=transformers.DataCollatorForSeq2Seq( tokenizer, return_tensors="pt", padding=True, ), ) trainer.train() trainer.save_model(os.path.join(training_args.output_dir, "checkpoint-final")) trainer.processing_class.save_pretrained( os.path.join(training_args.output_dir, "checkpoint-final") ) if __name__ == "__main__": train()