import os from math import ceil #CUDA_VISIBLE_DEVICES= "0" import numpy as np import pandas as pd from symusic import Score from concurrent.futures import ProcessPoolExecutor, as_completed from tqdm import tqdm semitone2degree = np.array([0, 2, 2, 3, 3, 4, 4.5, 4, 3, 3, 2, 2]) def hausdorff_dist(a: np.ndarray, b: np.ndarray, weight: tuple[float, float] = (0., 1.5)): if(not a.shape[1] or not b.shape[1]): return np.inf a_onset, a_pitch = a b_onset, b_pitch = b a_onset = a_onset.astype(np.float32) b_onset = b_onset.astype(np.float32) a_pitch = a_pitch.astype(np.int16) b_pitch = b_pitch.astype(np.int16) onset_dist_matrix = np.abs(a_onset.reshape(1, -1) - b_onset.reshape(-1, 1)) a2b_idx = onset_dist_matrix.argmin(1) b2a_idx = onset_dist_matrix.argmin(0) a_pitch -= (np.median(a_pitch) - np.median(b_pitch)).astype(np.int16) # Normalize pitch a_pitch = a_pitch + np.arange(-7, 7).reshape(-1, 1) # Transpose invarient interval_diff = np.concatenate([ a_pitch[:, a2b_idx] - b_pitch, b_pitch[b2a_idx] - a_pitch], axis=1) pitch_dist = np.abs(semitone2degree[interval_diff % 8] + np.abs(interval_diff) // 8 * np.sign(interval_diff)).mean(1).min() onset_dist = np.abs(np.concatenate([ a_onset[a2b_idx] - b_onset, b_onset[b2a_idx] - a_onset], axis=0)).mean() return (weight[0] * onset_dist + weight[1] * pitch_dist) / sum(weight) def midi_time_sliding_window(x: list[tuple[float, int]], window_size: float = 8., hop_size: float = 4.): x = sorted(x) trim_offset = (x[0][0] // hop_size) * hop_size end_time = x[-1][0] num_segment = ceil((end_time - window_size - trim_offset) / hop_size) + 1 time_matrix = (np.fromiter((time for time, _ in x), dtype=float) - trim_offset).reshape(1, -1).repeat(num_segment, axis=0) seg_time_starts = np.arange(num_segment).reshape(-1, 1) * hop_size time_compare_matrix = np.where((time_matrix >= seg_time_starts) & (time_matrix <= seg_time_starts + window_size), 0, 1) time_compare_matrix = np.diff(np.pad(time_compare_matrix, ((0, 0), (1, 1)), constant_values=1)) start_idxs = sorted(np.where(time_compare_matrix == -1), key=lambda x: x[0])[1].tolist() end_idxs = sorted(np.where(time_compare_matrix == 1), key=lambda x: x[0])[1].tolist() segments = [x[start:end] for start, end in zip(start_idxs, end_idxs)] return segments def midi_dist(a: list[tuple[float, int]], b: list[tuple[float, int]], window_size: float = 16., hop_size: float = 4): a = midi_time_sliding_window(a, window_size=window_size, hop_size=hop_size) b = midi_time_sliding_window(b, window_size=window_size, hop_size=hop_size) dist = np.inf for x,i in enumerate(a): for y,j in enumerate(b): cur_dist = hausdorff_dist(np.array(i, dtype=np.float32).T, np.array(j, dtype=np.float32).T) if cur_dist == 0: print(x, y) if(cur_dist < dist): dist = cur_dist return float(dist) def extract_notes(filepath: str): """读取MIDI并返回 (time, pitch) 列表""" try: s = Score(filepath).to("quarter") notes = [] # for t in s.tracks: # notes.extend([(n.time, n.pitch) for n in t.notes]) notes = [(n.time, n.pitch) for n in s.tracks[0].notes] # 仅使用第一个track return notes except Exception as e: print(f"读取 {filepath} 出错: {e}") return [] def compare_pair(file_a: str, file_b: str): try: notes_a = extract_notes(file_a) notes_b = extract_notes(file_b) if not notes_a or not notes_b: return (file_a, file_b, np.inf) dist = midi_dist(notes_a, notes_b) return (file_a, file_b, dist) except Exception as e: import traceback print(f"⚠️ compare_pair 出错: {file_a} vs {file_b}") traceback.print_exc() return (file_a, file_b, np.inf) def batch_compare(dir_a: str, dir_b: str, out_csv: str = "midi_similarity.csv", max_workers: int = 8): files_a = [os.path.join(dir_a, f) for f in os.listdir(dir_a) if f.endswith(".mid")] files_a = files_a[:100] # 仅比较前100个文件以节省时间 files_b = [os.path.join(dir_b, f) for f in os.listdir(dir_b) if f.endswith(".mid")] results = [] pbar = tqdm(total=len(files_a) * len(files_b), desc="Comparing MIDI files") with ProcessPoolExecutor(max_workers=max_workers) as executor: futures = [executor.submit(compare_pair, fa, fb) for fa in files_a for fb in files_b] for fut in as_completed(futures): pbar.update(1) try: results.append(fut.result()) except Exception as e: print(fut.result()) print(f"Error comparing pair: {e}") # print(f"Compared: {results[-1][0]} vs {results[-1][1]}, Distance: {results[-1][2]:.4f}") # with tqdm(total=len(files_a) * len(files_b)) as pbar: # for fa in files_a: # for fb in files_b: # results.append(compare_pair(fa, fb)) # pbar.update(1) # # 排序 results = sorted(results, key=lambda x: x[2]) # 保存 df = pd.DataFrame(results, columns=["file_a", "file_b", "distance"]) df.to_csv(out_csv, index=False) print(f"已保存结果到 {out_csv}") if __name__ == "__main__": dir_a = "wandb/run-20251015_154556-f0pj3ys3/cond_4m_top_p_t0.99_temp1.25/process_2_batch_23" dir_b = "dataset/Melody" batch_compare(dir_a, dir_b, out_csv="midi_similarity_v2.csv", max_workers=6)