import os import numpy as np import pandas as pd from symusic import Score from concurrent.futures import ProcessPoolExecutor, as_completed semitone2degree = np.array([0, 2, 2, 3, 3, 4, 4.5, 4, 3, 3, 2, 2]) def hausdorff_dist(a: np.ndarray, b: np.ndarray, weight: tuple[float, float] = (2., 1.5), oti: bool = True): if(not a.shape[1] or not b.shape[1]): return np.inf a_onset, a_pitch = a b_onset, b_pitch = b a_onset = a_onset.astype(np.float32) b_onset = b_onset.astype(np.float32) a_pitch = a_pitch.astype(np.uint8) b_pitch = b_pitch.astype(np.uint8) onset_dist_matrix = np.abs(a_onset.reshape(1, -1) - b_onset.reshape(-1, 1)) if(oti): pitch_dist_matrix = semitone2degree[np.abs(a_pitch.reshape(1, 1, -1) + np.arange(12).reshape(-1, 1, 1) - b_pitch.reshape(-1, 1)) % 12] dist_matrix = (weight[0] * np.expand_dims(onset_dist_matrix, 0) + weight[1] * pitch_dist_matrix) / sum(weight) a2b = dist_matrix.min(2) b2a = dist_matrix.min(1) dist = np.concatenate([a2b, b2a], axis=1) return dist.sum(axis=1).min() / len(dist) else: pitch_dist_matrix = semitone2degree[np.abs(a_pitch.reshape(1, -1) - b_pitch.reshape(-1, 1)) % 12] dist_matrix = (weight[0] * onset_dist_matrix + weight[1] * pitch_dist_matrix) / sum(weight) a2b = dist_matrix.min(1) b2a = dist_matrix.min(0) return float((a2b.sum() + b2a.sum()) / (a.shape[1] + b.shape[1])) def midi_time_sliding_window(x: list[tuple[float, int]], window_size: float = 16., hop_size: float = 4.): x = sorted(x) end_time = x[-1][0] out = [[] for _ in range(int(end_time // hop_size))] for i in sorted(x): segment = min(int(i[0] // hop_size), len(out) - 1) while(i[0] >= segment * hop_size): out[segment].append(i) segment -= 1 if(segment < 0): break return out def midi_dist(a: list[tuple[float, int]], b: list[tuple[float, int]], window_size: float = 16., hop_size: float = 4): a = midi_time_sliding_window(a) b = midi_time_sliding_window(b) dist = np.inf for i in a: for j in b: cur_dist = hausdorff_dist(np.array(i, dtype=np.float32).T, np.array(j, dtype=np.float32).T) if(cur_dist < dist): dist = cur_dist return dist def extract_notes(filepath: str): """读取MIDI并返回 (time, pitch) 列表""" try: s = Score(filepath).to("quarter") notes = [] for t in s.tracks: notes.extend([(n.time, n.pitch) for n in t.notes]) return notes except Exception as e: print(f"读取 {filepath} 出错: {e}") return [] def compare_pair(file_a: str, file_b: str): notes_a = extract_notes(file_a) notes_b = extract_notes(file_b) if not notes_a or not notes_b: return (file_a, file_b, np.inf) dist = midi_dist(notes_a, notes_b) return (file_a, file_b, dist) def batch_compare(dir_a: str, dir_b: str, out_csv: str = "midi_similarity.csv", max_workers: int = 8): files_a = [os.path.join(dir_a, f) for f in os.listdir(dir_a) if f.endswith(".mid")] files_b = [os.path.join(dir_b, f) for f in os.listdir(dir_b) if f.endswith(".mid")] results = [] with ProcessPoolExecutor(max_workers=max_workers) as executor: futures = [executor.submit(compare_pair, fa, fb) for fa in files_a for fb in files_b] for fut in as_completed(futures): results.append(fut.result()) # 排序 results = sorted(results, key=lambda x: x[2]) # 保存 df = pd.DataFrame(results, columns=["file_a", "file_b", "distance"]) df.to_csv(out_csv, index=False) print(f"已保存结果到 {out_csv}") if __name__ == "__main__": dir_a = "folder_a" dir_b = "folder_b" batch_compare(dir_a, dir_b, out_csv="midi_similarity.csv", max_workers=8)