635 lines
21 KiB
Python
635 lines
21 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
"""
|
||
基于token分布距离的重采样脚本
|
||
读取octuple_token_analysis_report.json,计算每个数据与整体分布的距离,
|
||
按照距离加权采样,距离越远的越容易被采样
|
||
"""
|
||
|
||
import os
|
||
import numpy as np
|
||
from pathlib import Path
|
||
from collections import Counter
|
||
from tqdm import tqdm
|
||
import json
|
||
from scipy.stats import entropy, wasserstein_distance
|
||
from scipy.spatial.distance import jensenshannon
|
||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||
import multiprocessing as mp
|
||
|
||
# Octuple的列名定义
|
||
COLUMN_NAMES = [
|
||
"pitch", # 0: Pitch/PitchDrum
|
||
"position", # 1: Position
|
||
"bar", # 2: Bar
|
||
"velocity", # 3: Velocity
|
||
"duration", # 4: Duration
|
||
"program", # 5: Program
|
||
"tempo", # 6: Tempo
|
||
"timesig" # 7: TimeSignature
|
||
]
|
||
|
||
|
||
def load_distribution_from_json(json_path):
|
||
"""
|
||
从JSON文件中加载整体token分布
|
||
|
||
Args:
|
||
json_path: JSON文件路径
|
||
|
||
Returns:
|
||
dict: {column_name: {token: probability}}
|
||
"""
|
||
print(f"读取分布文件: {json_path}")
|
||
with open(json_path, 'r', encoding='utf-8') as f:
|
||
report = json.load(f)
|
||
|
||
distributions = {}
|
||
columns = report.get('columns', {})
|
||
|
||
for col_name in COLUMN_NAMES:
|
||
if col_name not in columns:
|
||
print(f"警告: 列 {col_name} 不在报告中")
|
||
distributions[col_name] = {}
|
||
continue
|
||
|
||
col_data = columns[col_name]
|
||
token_counts = col_data.get('token_counts', {})
|
||
total_tokens = col_data.get('total_tokens', 1)
|
||
|
||
# 转换为概率分布
|
||
distribution = {}
|
||
for token_str, count in token_counts.items():
|
||
token = int(token_str)
|
||
distribution[token] = count / total_tokens
|
||
|
||
distributions[col_name] = distribution
|
||
print(f" 列 {col_name}: {len(distribution)} 个唯一token, 总token数: {total_tokens:,}")
|
||
|
||
return distributions
|
||
|
||
|
||
def compute_data_distribution(data, col_idx):
|
||
"""
|
||
计算单个数据在指定列的token分布
|
||
|
||
Args:
|
||
data: numpy数组 (num_tokens, num_columns)
|
||
col_idx: 列索引
|
||
|
||
Returns:
|
||
dict: {token: probability}
|
||
"""
|
||
if data.size == 0:
|
||
return {}
|
||
|
||
tokens = data[:, col_idx]
|
||
unique, counts = np.unique(tokens, return_counts=True)
|
||
total = len(tokens)
|
||
|
||
distribution = {}
|
||
for token, count in zip(unique, counts):
|
||
distribution[int(token)] = count / total
|
||
|
||
return distribution
|
||
|
||
|
||
def compute_emd_distance(dist1, dist2):
|
||
"""
|
||
使用推土机距离(Earth Mover's Distance / Wasserstein距离)计算两个分布之间的距离
|
||
|
||
Args:
|
||
dist1: 分布1,dict {token: probability},已归一化
|
||
dist2: 分布2,dict {token: probability},已归一化
|
||
|
||
Returns:
|
||
float: EMD距离
|
||
"""
|
||
# 获取所有token的并集,并排序
|
||
all_tokens = sorted(set(dist1.keys()) | set(dist2.keys()))
|
||
|
||
if not all_tokens:
|
||
return 0.0
|
||
|
||
# 构建概率向量和token值向量
|
||
p_weights = np.array([dist1.get(token, 0.0) for token in all_tokens])
|
||
q_weights = np.array([dist2.get(token, 0.0) for token in all_tokens])
|
||
token_values = np.array(all_tokens, dtype=float)
|
||
|
||
# 归一化(处理数值误差)
|
||
p_sum = p_weights.sum()
|
||
q_sum = q_weights.sum()
|
||
|
||
if p_sum < 1e-10 or q_sum < 1e-10:
|
||
return 0.0
|
||
|
||
p_weights = p_weights / p_sum
|
||
q_weights = q_weights / q_sum
|
||
|
||
# 使用Wasserstein距离(1-Wasserstein距离,即推土机距离)
|
||
# wasserstein_distance需要两个分布的样本值位置和权重
|
||
# 对于离散分布,我们使用token值作为位置
|
||
emd = wasserstein_distance(token_values, token_values, p_weights, q_weights)
|
||
|
||
return emd
|
||
|
||
|
||
def compute_distribution_distance(dist1, dist2, method='emd'):
|
||
"""
|
||
计算两个分布之间的距离
|
||
|
||
Args:
|
||
dist1: 分布1,dict {token: probability}
|
||
dist2: 分布2,dict {token: probability}
|
||
method: 距离计算方法,'emd' (推土机距离), 'js' (Jensen-Shannon) 或 'kl' (KL散度)
|
||
|
||
Returns:
|
||
float: 分布距离
|
||
"""
|
||
if method == 'emd':
|
||
return compute_emd_distance(dist1, dist2)
|
||
|
||
# 获取所有token的并集
|
||
all_tokens = set(dist1.keys()) | set(dist2.keys())
|
||
|
||
if not all_tokens:
|
||
return 0.0
|
||
|
||
# 构建概率向量
|
||
p = np.array([dist1.get(token, 0.0) for token in all_tokens])
|
||
q = np.array([dist2.get(token, 0.0) for token in all_tokens])
|
||
|
||
# 归一化(处理数值误差)
|
||
p = p / (p.sum() + 1e-10)
|
||
q = q / (q.sum() + 1e-10)
|
||
|
||
if method == 'js':
|
||
# Jensen-Shannon散度(对称,范围[0, 1])
|
||
return jensenshannon(p, q)
|
||
elif method == 'kl':
|
||
# KL散度(非对称,需要处理零值)
|
||
# 添加小的平滑项避免log(0)
|
||
p = p + 1e-10
|
||
q = q + 1e-10
|
||
p = p / p.sum()
|
||
q = q / q.sum()
|
||
return entropy(p, q)
|
||
else:
|
||
raise ValueError(f"未知的距离方法: {method}")
|
||
|
||
|
||
def extract_subdistribution(global_dist, data_tokens):
|
||
"""
|
||
从全局分布中提取只包含数据中出现的token的子分布,并归一化
|
||
|
||
Args:
|
||
global_dist: 全局分布,dict {token: probability}
|
||
data_tokens: 数据中出现的token集合,set或list
|
||
|
||
Returns:
|
||
dict: 子分布,dict {token: probability},已归一化
|
||
"""
|
||
if not data_tokens or not global_dist:
|
||
return {}
|
||
|
||
# 提取子分布
|
||
sub_dist = {token: global_dist.get(token, 0.0) for token in data_tokens}
|
||
|
||
# 归一化
|
||
total = sum(sub_dist.values())
|
||
if total < 1e-10:
|
||
return {}
|
||
|
||
normalized_sub_dist = {token: prob / total for token, prob in sub_dist.items()}
|
||
|
||
return normalized_sub_dist
|
||
|
||
|
||
def compute_data_distance(data, global_distributions, method='emd'):
|
||
"""
|
||
计算单个数据与整体分布的距离
|
||
对每首歌,从数据集分布中找出和这首歌的分布包含的数据相同的子分布,
|
||
都进行归一化然后计算推土机距离
|
||
|
||
Args:
|
||
data: numpy数组 (num_tokens, num_columns) 或文件路径(如果是延迟加载)
|
||
global_distributions: 整体分布,dict {column_name: {token: probability}}
|
||
method: 距离计算方法,'emd' (推土机距离), 'js' (Jensen-Shannon) 或 'kl' (KL散度)
|
||
|
||
Returns:
|
||
float: 平均距离(跨所有列)
|
||
"""
|
||
# 如果data是路径,则加载它
|
||
if isinstance(data, (str, Path)):
|
||
try:
|
||
data = np.load(data)['arr_0']
|
||
except Exception as e:
|
||
# 不打印错误,让调用者处理
|
||
raise RuntimeError(f"加载文件 {data} 时出错: {e}")
|
||
|
||
distances = []
|
||
|
||
for col_idx, col_name in enumerate(COLUMN_NAMES):
|
||
# 计算该数据在该列的分布
|
||
data_dist = compute_data_distribution(data, col_idx)
|
||
|
||
# 获取整体分布
|
||
global_dist = global_distributions.get(col_name, {})
|
||
|
||
if not data_dist or not global_dist:
|
||
continue
|
||
|
||
# 从全局分布中提取只包含数据中出现的token的子分布
|
||
data_tokens = set(data_dist.keys())
|
||
sub_global_dist = extract_subdistribution(global_dist, data_tokens)
|
||
|
||
if not sub_global_dist:
|
||
continue
|
||
|
||
# 归一化数据分布
|
||
data_dist_sum = sum(data_dist.values())
|
||
if data_dist_sum < 1e-10:
|
||
continue
|
||
normalized_data_dist = {token: prob / data_dist_sum
|
||
for token, prob in data_dist.items()}
|
||
|
||
# 计算距离(两个分布都已归一化)
|
||
dist = compute_distribution_distance(normalized_data_dist, sub_global_dist, method=method)
|
||
distances.append(dist)
|
||
|
||
# 返回平均距离
|
||
return np.mean(distances) if distances else 0.0
|
||
|
||
|
||
def _load_single_file(npz_file):
|
||
"""
|
||
加载单个npz文件的辅助函数(用于多线程)
|
||
|
||
Args:
|
||
npz_file: npz文件路径
|
||
|
||
Returns:
|
||
tuple: (data, file_path) 或 None(如果加载失败)
|
||
"""
|
||
try:
|
||
data = np.load(npz_file)['arr_0']
|
||
if data.ndim == 2:
|
||
return (data, npz_file)
|
||
elif data.ndim == 1:
|
||
print(f"警告: {npz_file} 是一维数组,跳过")
|
||
return None
|
||
except Exception as e:
|
||
print(f"错误: 加载 {npz_file} 时出错: {e}")
|
||
return None
|
||
|
||
|
||
def get_data_file_paths(data_dir):
|
||
"""
|
||
获取所有数据文件路径(不加载数据)
|
||
|
||
Args:
|
||
data_dir: 数据目录路径
|
||
|
||
Returns:
|
||
list: 文件路径列表
|
||
"""
|
||
data_dir = Path(data_dir)
|
||
npz_files = []
|
||
|
||
if data_dir.exists():
|
||
npz_files = sorted(list(data_dir.rglob("*.npz")))
|
||
|
||
if not npz_files:
|
||
print(f"警告: 在 {data_dir} 中未找到.npz文件")
|
||
return []
|
||
|
||
print(f"找到 {len(npz_files)} 个.npz文件")
|
||
return npz_files
|
||
|
||
|
||
def load_data_with_paths(data_dir, num_threads=None, lazy=False):
|
||
"""
|
||
加载所有数据并返回数据路径列表(多线程版本)
|
||
|
||
Args:
|
||
data_dir: 数据目录路径
|
||
num_threads: 线程数,None表示使用CPU核心数
|
||
lazy: 如果为True,只返回文件路径,不加载数据
|
||
|
||
Returns:
|
||
tuple: (data_list, file_paths_list) 或 (None, file_paths_list) 如果lazy=True
|
||
"""
|
||
data_dir = Path(data_dir)
|
||
npz_files = []
|
||
|
||
if data_dir.exists():
|
||
npz_files = sorted(list(data_dir.rglob("*.npz")))
|
||
|
||
if not npz_files:
|
||
print(f"警告: 在 {data_dir} 中未找到.npz文件")
|
||
return [], []
|
||
|
||
if lazy:
|
||
print(f"找到 {len(npz_files)} 个.npz文件(延迟加载模式)")
|
||
return None, npz_files
|
||
|
||
print(f"找到 {len(npz_files)} 个.npz文件,开始加载...")
|
||
|
||
if num_threads is None:
|
||
num_threads = min(mp.cpu_count(), len(npz_files))
|
||
|
||
all_data = []
|
||
file_paths = []
|
||
|
||
# 使用多线程加载文件
|
||
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||
futures = {executor.submit(_load_single_file, npz_file): npz_file
|
||
for npz_file in npz_files}
|
||
|
||
for future in tqdm(as_completed(futures), total=len(futures), desc="加载数据"):
|
||
result = future.result()
|
||
if result is not None:
|
||
data, file_path = result
|
||
all_data.append(data)
|
||
file_paths.append(file_path)
|
||
|
||
# 保持原始顺序
|
||
if file_paths:
|
||
sorted_pairs = sorted(zip(file_paths, all_data), key=lambda x: str(x[0]))
|
||
file_paths, all_data = zip(*sorted_pairs)
|
||
file_paths = list(file_paths)
|
||
all_data = list(all_data)
|
||
|
||
return all_data, file_paths
|
||
|
||
|
||
def weighted_resample(file_paths, distances, sample_ratio=0.3, method='js', lazy=True):
|
||
"""
|
||
根据距离进行加权重采样
|
||
|
||
Args:
|
||
file_paths: 文件路径列表
|
||
distances: 距离列表
|
||
sample_ratio: 采样比例
|
||
method: 距离计算方法(用于确定权重方向)
|
||
lazy: 如果为True,返回文件路径而不是数据
|
||
|
||
Returns:
|
||
tuple: (sampled_data_or_paths, sampled_paths, sampled_indices)
|
||
"""
|
||
n_samples = int(len(file_paths) * sample_ratio)
|
||
print(f"\n准备采样 {n_samples} 个数据 (占总数的 {sample_ratio*100:.1f}%)")
|
||
|
||
# 将距离转换为权重
|
||
# 距离越远,权重越大
|
||
distances = np.array(distances)
|
||
|
||
# 处理零距离或异常值
|
||
min_dist = np.min(distances[distances > 0]) if np.any(distances > 0) else 1e-10
|
||
distances = np.maximum(distances, min_dist * 0.1)
|
||
|
||
# 归一化距离到[0, 1],然后转换为权重
|
||
# 使用指数函数增强距离差异
|
||
normalized_distances = (distances - distances.min()) / (distances.max() - distances.min() + 1e-10)
|
||
weights = np.exp(normalized_distances * 3) # 指数放大,使距离远的更容易被采样
|
||
|
||
# 归一化权重
|
||
weights = weights / weights.sum()
|
||
|
||
# 加权随机采样
|
||
indices = np.arange(len(file_paths))
|
||
sampled_indices = np.random.choice(indices, size=n_samples, replace=False, p=weights)
|
||
|
||
sampled_paths = [file_paths[i] for i in sampled_indices]
|
||
|
||
# 如果lazy=True,返回路径;否则加载数据
|
||
if lazy:
|
||
sampled_data = sampled_paths # 返回路径,延迟加载
|
||
else:
|
||
# 加载采样后的数据
|
||
sampled_data = []
|
||
for path in tqdm(sampled_paths, desc="加载采样数据"):
|
||
try:
|
||
data = np.load(path)['arr_0']
|
||
sampled_data.append(data)
|
||
except Exception as e:
|
||
print(f"错误: 加载 {path} 时出错: {e}")
|
||
sampled_data.append(None)
|
||
|
||
print(f"采样完成:")
|
||
print(f" 采样数据数量: {len(sampled_paths)}")
|
||
print(f" 平均距离: {distances[sampled_indices].mean():.6f}")
|
||
print(f" 最小距离: {distances[sampled_indices].min():.6f}")
|
||
print(f" 最大距离: {distances[sampled_indices].max():.6f}")
|
||
|
||
return sampled_data, sampled_paths, sampled_indices
|
||
|
||
|
||
def _save_single_file(args_tuple):
|
||
"""
|
||
保存单个文件的辅助函数(用于多线程)
|
||
支持延迟加载:如果data是路径,则从文件加载
|
||
|
||
Args:
|
||
args_tuple: (data, original_path, output_dir)
|
||
|
||
Returns:
|
||
tuple: (success, original_path) 或 (False, original_path, error_msg)
|
||
"""
|
||
data, original_path, output_dir = args_tuple
|
||
try:
|
||
# 如果data是路径,则加载它
|
||
if isinstance(data, (str, Path)):
|
||
data = np.load(data)['arr_0']
|
||
|
||
# 保持相对路径结构
|
||
relative_path = original_path.relative_to(original_path.parents[len(original_path.parts) - 3])
|
||
output_path = output_dir / relative_path
|
||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||
|
||
np.savez_compressed(output_path, data)
|
||
return (True, original_path)
|
||
except Exception as e:
|
||
error_msg = str(e)
|
||
print(f"错误: 保存 {original_path} 时出错: {error_msg}")
|
||
return (False, original_path, error_msg)
|
||
|
||
|
||
def save_sampled_data(sampled_data, sampled_paths, output_dir, num_threads=None):
|
||
"""
|
||
保存采样后的数据(多线程版本)
|
||
|
||
Args:
|
||
sampled_data: 采样后的数据列表
|
||
sampled_paths: 采样后的文件路径列表
|
||
output_dir: 输出目录
|
||
num_threads: 线程数,None表示使用CPU核心数
|
||
"""
|
||
output_dir = Path(output_dir)
|
||
output_dir.mkdir(parents=True, exist_ok=True)
|
||
|
||
print(f"\n保存采样数据到: {output_dir}")
|
||
|
||
if num_threads is None:
|
||
num_threads = min(mp.cpu_count(), len(sampled_data))
|
||
|
||
# 准备参数
|
||
save_args = [(data, original_path, output_dir)
|
||
for data, original_path in zip(sampled_data, sampled_paths)]
|
||
|
||
# 使用多线程保存文件
|
||
success_count = 0
|
||
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||
# 提交所有任务
|
||
futures = [executor.submit(_save_single_file, args)
|
||
for args in save_args]
|
||
|
||
# 收集结果
|
||
for future in tqdm(as_completed(futures), total=len(futures), desc="保存数据"):
|
||
try:
|
||
result = future.result(timeout=300) # 设置超时避免卡死
|
||
if isinstance(result, tuple) and len(result) >= 2:
|
||
success = result[0]
|
||
if success:
|
||
success_count += 1
|
||
except Exception as e:
|
||
print(f"错误: 获取保存结果时出错: {e}")
|
||
|
||
print(f"保存完成,共保存 {success_count}/{len(sampled_data)} 个文件")
|
||
|
||
|
||
def main():
|
||
"""主函数"""
|
||
import argparse
|
||
|
||
parser = argparse.ArgumentParser(description="基于token分布距离的重采样")
|
||
parser.add_argument("--json_path", type=str,
|
||
default="octuple_token_analysis_report.json",
|
||
help="token分析报告JSON文件路径")
|
||
parser.add_argument("--data_dir", type=str,
|
||
default="dataset/represented_data/tuneidx/tuneidx_msmidi/oct8",
|
||
help="数据目录路径")
|
||
parser.add_argument("--output_dir", type=str,
|
||
default="dataset/represented_data/tuneidx/tuneidx_msmidi/oct8_resampled",
|
||
help="输出目录路径")
|
||
parser.add_argument("--sample_ratio", type=float, default=0.3,
|
||
help="采样比例 (默认: 0.3)")
|
||
parser.add_argument("--distance_method", type=str, default="emd",
|
||
choices=["emd", "js", "kl"],
|
||
help="距离计算方法: 'emd' (推土机距离/EMD), 'js' (Jensen-Shannon) 或 'kl' (KL散度)")
|
||
parser.add_argument("--seed", type=int, default=42,
|
||
help="随机种子")
|
||
parser.add_argument("--num_threads", type=int, default=1,
|
||
help="线程数,None表示使用CPU核心数 (默认: None)")
|
||
|
||
args = parser.parse_args()
|
||
|
||
# 设置随机种子
|
||
np.random.seed(args.seed)
|
||
|
||
# 1. 加载整体分布
|
||
global_distributions = load_distribution_from_json(args.json_path)
|
||
|
||
# 2. 获取所有数据文件路径(延迟加载模式,避免一次性加载所有数据)
|
||
_, file_paths = load_data_with_paths(args.data_dir, lazy=True)
|
||
|
||
if not file_paths:
|
||
print("错误: 未找到任何数据文件")
|
||
return
|
||
|
||
print(f"\n共找到 {len(file_paths)} 个数据文件")
|
||
|
||
# 3. 计算每个数据与整体分布的距离(多线程版本,延迟加载)
|
||
print("\n计算每个数据与整体分布的距离(延迟加载模式)...")
|
||
|
||
def _compute_distance_wrapper(args_tuple):
|
||
"""计算距离的包装函数(用于多线程,支持延迟加载)"""
|
||
idx, file_path, global_dists, method = args_tuple
|
||
try:
|
||
distance = compute_data_distance(file_path, global_dists, method=method)
|
||
return (idx, distance, None)
|
||
except Exception as e:
|
||
return (idx, 0.0, str(e))
|
||
|
||
if args.num_threads is None:
|
||
num_threads = min(mp.cpu_count(), len(file_paths))
|
||
else:
|
||
num_threads = args.num_threads
|
||
|
||
# 准备参数(使用文件路径而不是数据,包含索引)
|
||
distance_args = [(i, file_path, global_distributions, args.distance_method)
|
||
for i, file_path in enumerate(file_paths)]
|
||
|
||
# 使用多线程计算距离(按需加载数据)
|
||
# 初始化结果列表,保持顺序
|
||
distances = [0.0] * len(file_paths)
|
||
|
||
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||
# 提交所有任务
|
||
futures = [executor.submit(_compute_distance_wrapper, args)
|
||
for args in distance_args]
|
||
|
||
# 收集结果,使用 tqdm 显示进度
|
||
for future in tqdm(as_completed(futures), total=len(futures), desc="计算距离"):
|
||
try:
|
||
idx, distance, error = future.result(timeout=300) # 设置超时避免卡死
|
||
distances[idx] = distance
|
||
if error:
|
||
print(f"警告: 计算距离时出错 (索引 {idx}): {error}")
|
||
except Exception as e:
|
||
print(f"错误: 获取结果时出错: {e}")
|
||
# 如果无法获取结果,保持默认值 0.0
|
||
|
||
distances = np.array(distances)
|
||
print(f"\n距离统计:")
|
||
print(f" 平均距离: {distances.mean():.6f}")
|
||
print(f" 最小距离: {distances.min():.6f}")
|
||
print(f" 最大距离: {distances.max():.6f}")
|
||
print(f" 标准差: {distances.std():.6f}")
|
||
|
||
# 4. 根据距离进行加权采样(延迟加载模式)
|
||
sampled_data, sampled_paths, sampled_indices = weighted_resample(
|
||
file_paths, distances,
|
||
sample_ratio=args.sample_ratio,
|
||
method=args.distance_method,
|
||
lazy=True # 使用延迟加载,避免重复加载数据
|
||
)
|
||
|
||
# 5. 保存采样结果(多线程,延迟加载)
|
||
save_sampled_data(sampled_data, sampled_paths, args.output_dir, num_threads=args.num_threads)
|
||
|
||
# 6. 保存采样索引(可选,用于后续分析)
|
||
indices_file = Path(args.output_dir) / "sampled_indices.npy"
|
||
np.save(indices_file, sampled_indices)
|
||
print(f"\n采样索引已保存到: {indices_file}")
|
||
|
||
# 保存采样信息
|
||
info = {
|
||
"total_samples": len(file_paths),
|
||
"sampled_samples": len(sampled_data),
|
||
"sample_ratio": args.sample_ratio,
|
||
"distance_method": args.distance_method,
|
||
"distance_stats": {
|
||
"mean": float(distances.mean()),
|
||
"min": float(distances.min()),
|
||
"max": float(distances.max()),
|
||
"std": float(distances.std())
|
||
},
|
||
"sampled_distance_stats": {
|
||
"mean": float(distances[sampled_indices].mean()),
|
||
"min": float(distances[sampled_indices].min()),
|
||
"max": float(distances[sampled_indices].max()),
|
||
"std": float(distances[sampled_indices].std())
|
||
}
|
||
}
|
||
|
||
info_file = Path(args.output_dir) / "resample_info.json"
|
||
with open(info_file, 'w', encoding='utf-8') as f:
|
||
json.dump(info, f, indent=2, ensure_ascii=False)
|
||
print(f"采样信息已保存到: {info_file}")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|
||
|