Edit Flows - BERT
Warmup
In this section, we show toy examples of pretraining and SFTing ModernBERT-large on small datasets to generate text with EditFlow.
You can use any BERT model instead for example, by --model_name_or_path "FacebookAI/roberta-large".
Pretrain
To train ModernBERT-large on the tiny-shakespeare dataset, run:
PYTHONPATH=. accelerate launch --config_file scripts/accelerate_configs/ddp.yaml --num_processes 1 \
examples/editflow/bert/pt.py \
--model_name_or_path "answerdotai/ModernBERT-large" \
--dataset_args "Trelis/tiny-shakespeare" \
--text_field "Text" \
--insert_eos False \
--max_length 128 \
--num_train_epochs 20 \
--per_device_train_batch_size 64 \
--per_device_eval_batch_size 64 \
--save_steps 0.1 \
--x0_sampler "masks[length:64]" \
--output_dir "models/EditFlow/ModernBERT-large/tiny-shakespeare"
To run inference with the model:
PYTHONPATH=. python examples/editflow/generate.py \
--model_name_or_path "models/EditFlow/ModernBERT-large/tiny-shakespeare/checkpoint-final" \
--tau 0.01 --mask_length 64 --seed 42 --make_gif
# see `decode_trace.gif`
SFT
To train ModernBERT-large on the alpaca dataset, run:
PYTHONPATH=. accelerate launch --config_file scripts/accelerate_configs/zero2.yaml --num_processes 8 \
examples/editflow/bert/sft.py \
--model_name_or_path "answerdotai/ModernBERT-large" \
--dataset_args "tatsu-lab/alpaca" \
--max_length 512 \
--num_train_epochs 20 \
--per_device_train_batch_size 64 \
--per_device_eval_batch_size 64 \
--save_steps 0.1 \
--x0_sampler "masks[length:64]" \
--output_dir "models/EditFlow/ModernBERT-large/alpaca"
To run inference with the model:
PYTHONPATH=. python examples/editflow/generate.py \
--model_name_or_path "models/EditFlow/ModernBERT-large/alpaca/checkpoint-final" \
--prompt "Could you please write a poem for me?" --tau 0.01 --mask_length 64 --seed 42 --make_gif
# see `decode_trace.gif`