139 lines
5.7 KiB
Python
139 lines
5.7 KiB
Python
import os
|
|
from math import ceil
|
|
#CUDA_VISIBLE_DEVICES= "0"
|
|
import numpy as np
|
|
import pandas as pd
|
|
from symusic import Score
|
|
from concurrent.futures import ProcessPoolExecutor, as_completed
|
|
from tqdm import tqdm
|
|
semitone2degree = np.array([0, 2, 2, 3, 3, 4, 4.5, 4, 3, 3, 2, 2])
|
|
|
|
def hausdorff_dist(a: np.ndarray, b: np.ndarray, weight: tuple[float, float] = (0., 1.5)):
|
|
if(not a.shape[1] or not b.shape[1]):
|
|
return np.inf
|
|
a_onset, a_pitch = a
|
|
b_onset, b_pitch = b
|
|
a_onset = a_onset.astype(np.float32)
|
|
b_onset = b_onset.astype(np.float32)
|
|
a_pitch = a_pitch.astype(np.int16)
|
|
b_pitch = b_pitch.astype(np.int16)
|
|
|
|
onset_dist_matrix = np.abs(a_onset.reshape(1, -1) - b_onset.reshape(-1, 1))
|
|
a2b_idx = onset_dist_matrix.argmin(1)
|
|
b2a_idx = onset_dist_matrix.argmin(0)
|
|
|
|
a_pitch -= (np.median(a_pitch) - np.median(b_pitch)).astype(np.int16) # Normalize pitch
|
|
a_pitch = a_pitch + np.arange(-7, 7).reshape(-1, 1) # Transpose invarient
|
|
|
|
interval_diff = np.concatenate([
|
|
a_pitch[:, a2b_idx] - b_pitch,
|
|
b_pitch[b2a_idx] - a_pitch], axis=1)
|
|
pitch_dist = np.abs(semitone2degree[interval_diff % 8] + np.abs(interval_diff) // 8 * np.sign(interval_diff)).mean(1).min()
|
|
onset_dist = np.abs(np.concatenate([
|
|
a_onset[a2b_idx] - b_onset,
|
|
b_onset[b2a_idx] - a_onset], axis=0)).mean()
|
|
|
|
return (weight[0] * onset_dist + weight[1] * pitch_dist) / sum(weight)
|
|
|
|
|
|
def midi_time_sliding_window(x: list[tuple[float, int]], window_size: float = 8., hop_size: float = 4.):
|
|
x = sorted(x)
|
|
trim_offset = (x[0][0] // hop_size) * hop_size
|
|
end_time = x[-1][0]
|
|
num_segment = ceil((end_time - window_size - trim_offset) / hop_size) + 1
|
|
|
|
time_matrix = (np.fromiter((time for time, _ in x), dtype=float) - trim_offset).reshape(1, -1).repeat(num_segment, axis=0)
|
|
seg_time_starts = np.arange(num_segment).reshape(-1, 1) * hop_size
|
|
|
|
time_compare_matrix = np.where((time_matrix >= seg_time_starts) & (time_matrix <= seg_time_starts + window_size), 0, 1)
|
|
time_compare_matrix = np.diff(np.pad(time_compare_matrix, ((0, 0), (1, 1)), constant_values=1))
|
|
start_idxs = sorted(np.where(time_compare_matrix == -1), key=lambda x: x[0])[1].tolist()
|
|
end_idxs = sorted(np.where(time_compare_matrix == 1), key=lambda x: x[0])[1].tolist()
|
|
|
|
segments = [x[start:end] for start, end in zip(start_idxs, end_idxs)]
|
|
|
|
return segments
|
|
|
|
|
|
def midi_dist(a: list[tuple[float, int]], b: list[tuple[float, int]], window_size: float = 16., hop_size: float = 4):
|
|
a = midi_time_sliding_window(a, window_size=window_size, hop_size=hop_size)
|
|
b = midi_time_sliding_window(b, window_size=window_size, hop_size=hop_size)
|
|
dist = np.inf
|
|
for x,i in enumerate(a):
|
|
for y,j in enumerate(b):
|
|
cur_dist = hausdorff_dist(np.array(i, dtype=np.float32).T, np.array(j, dtype=np.float32).T)
|
|
if cur_dist == 0:
|
|
print(x, y)
|
|
if(cur_dist < dist):
|
|
dist = cur_dist
|
|
return float(dist)
|
|
|
|
|
|
def extract_notes(filepath: str):
|
|
"""读取MIDI并返回 (time, pitch) 列表"""
|
|
try:
|
|
s = Score(filepath).to("quarter")
|
|
notes = []
|
|
# for t in s.tracks:
|
|
# notes.extend([(n.time, n.pitch) for n in t.notes])
|
|
notes = [(n.time, n.pitch) for n in s.tracks[0].notes] # 仅使用第一个track
|
|
return notes
|
|
except Exception as e:
|
|
print(f"读取 {filepath} 出错: {e}")
|
|
return []
|
|
|
|
def compare_pair(file_a: str, file_b: str):
|
|
try:
|
|
notes_a = extract_notes(file_a)
|
|
notes_b = extract_notes(file_b)
|
|
if not notes_a or not notes_b:
|
|
return (file_a, file_b, np.inf)
|
|
dist = midi_dist(notes_a, notes_b)
|
|
return (file_a, file_b, dist)
|
|
except Exception as e:
|
|
import traceback
|
|
print(f"⚠️ compare_pair 出错: {file_a} vs {file_b}")
|
|
traceback.print_exc()
|
|
return (file_a, file_b, np.inf)
|
|
|
|
|
|
def batch_compare(dir_a: str, dir_b: str, out_csv: str = "midi_similarity.csv", max_workers: int = 8):
|
|
files_a = [os.path.join(dir_a, f) for f in os.listdir(dir_a) if f.endswith(".mid")]
|
|
# remove files end with _prompt.mid
|
|
files_a = [f for f in files_a if not f.endswith("_prompt.mid")]
|
|
files_a = files_a
|
|
files_b = [os.path.join(dir_b, f) for f in os.listdir(dir_b) if f.endswith(".mid")]
|
|
|
|
|
|
results = []
|
|
pbar = tqdm(total=len(files_a) * len(files_b), desc="Comparing MIDI files")
|
|
with ProcessPoolExecutor(max_workers=max_workers) as executor:
|
|
futures = [executor.submit(compare_pair, fa, fb) for fa in files_a for fb in files_b]
|
|
for fut in as_completed(futures):
|
|
pbar.update(1)
|
|
try:
|
|
results.append(fut.result())
|
|
if results[-1][2] == 0:
|
|
print(f"Exact match found: {results[-1][0]} and {results[-1][1]}")
|
|
except Exception as e:
|
|
print(fut.result())
|
|
print(f"Error comparing pair: {e}")
|
|
# print(f"Compared: {results[-1][0]} vs {results[-1][1]}, Distance: {results[-1][2]:.4f}")
|
|
# with tqdm(total=len(files_a) * len(files_b)) as pbar:
|
|
# for fa in files_a:
|
|
# for fb in files_b:
|
|
# results.append(compare_pair(fa, fb))
|
|
# pbar.update(1)
|
|
# # 排序
|
|
results = sorted(results, key=lambda x: x[2])
|
|
|
|
# 保存
|
|
df = pd.DataFrame(results, columns=["file_a", "file_b", "distance"])
|
|
df.to_csv(out_csv, index=False)
|
|
print(f"已保存结果到 {out_csv}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
dir_a = "wandb/run-20251124_104410-bjdyzt85ar_aux_melody/uncond_min_p_t0.2_temp1.25"
|
|
dir_b = "dataset/Melody"
|
|
batch_compare(dir_a, dir_b, out_csv="midi_similarity_withbase_p0.6.csv", max_workers=24) |