Files
MIDIFoundationModel/Amadeus/symbolic_yamls/config-accelerate.yaml
2025-09-25 15:32:23 +08:00

65 lines
3.0 KiB
YAML

defaults:
# - nn_params: nb8_embSum_NMT
# - nn_params: remi8
- nn_params: nb8_embSum_diff_t2m_150M_finetunning
# - nn_params: nb8_embSum_diff_t2m_150M_pretraining
# - nn_params: nb8_embSum_subPararell
# - nn_params: nb8_embSum_diff_t2m_150M
# - nn_params: nb8_embSum_subFeedForward
# - nn_params: nb8_embSum_diff
# nn_params: nb8_SA_diff
# - nn_params: nb8_embSum_diff_main12head16dim512_ave
# - nn_params: nb8_embSum_NMT_main12_head_16_dim512
# - nn_params: remi8_main12_head_16_dim512
# - nn_params: nb5_embSum_diff_main12head16dim768_sub3
dataset: SOD # Pop1k7, Pop909, SOD, LakhClean,PretrainingDataset FinetuneDataset
captions_path: dataset/midicaps/train_set.json
# dataset: SymphonyNet_Dataset # Pop1k7, Pop909, SOD, LakhClean
# captions_path: dataset/symphonyNet/syd-caption.json
use_ddp: True # True, False | distributed data parallel
use_fp16: True # True, False | mixed precision training
use_diff: True # True,use diffusion in subdecoder
diff_steps: 8 # number of diffusion steps
use_dispLoss: True
lambda_weight: 0.5
tau: 0.5
train_params:
device: cuda
batch_size: 3
grad_clip: 1.0
num_iter: 300000 # total number of iterations
num_cycles_for_inference: 10 # number of cycles for inference, iterations_per_validation_cycle * num_cycles_for_inference
num_cycles_for_model_checkpoint: 1 # number of cycles for model checkpoint, iterations_per_validation_cycle * num_cycles_for_model_checkpoint
iterations_per_training_cycle: 10 # number of iterations for logging training loss
iterations_per_validation_cycle: 5000 # number of iterations for validation process
input_length: 3072 # input sequence length3072
# you can use focal loss, it it's not used, set focal_gamma to 0
focal_alpha: 1
focal_gamma: 0
# learning rate scheduler: 'cosinelr', 'cosineannealingwarmuprestarts', 'not-using', please check train_utils.py for more details
scheduler : cosinelr
initial_lr: 0.00005
decay_step_rate: 0.8 # means it will reach its lowest point at decay_step_rate * total_num_iter
num_steps_per_cycle: 20000 # number of steps per cycle for 'cosineannealingwarmuprestarts'
warmup_steps: 2000 #number of warmup steps
max_lr: 0.00015
gamma: 0.6 # the decay rate for 'cosineannealingwarmuprestarts'
# Distributed Data Parallel
world_size: 5 # 0 means no distributed training
gradient_accumulation_steps: 4 # 1 means no gradient accumulation
inference_params:
num_uncond_generation: 1 # number of unconditional generation
num_cond_generation: 3 # number of conditional generation
data_params:
first_pred_feature: pitch # compound shifting for NB only, choose the target sub-token (remi and cp are not influenced by this argument)
split_ratio: 0.998 # train-validation-test split ratio
aug_type: pitch # random, null | pitch and chord augmentation type
general:
debug: False
make_log: True # True, False | update the log file in wandb online to your designated project and entity
infer_and_log: True # True, False | inference and log the results