Files
MIDIFoundationModel/dllm/examples/editflow/llada/adapt.py
2025-11-27 15:44:17 +08:00

89 lines
2.9 KiB
Python

"""
Local users
------------
- 1 GPU (LoRA, useful for testing):
accelerate launch \
--config_file scripts/accelerate_configs/ddp.yaml --num_processes 1 \
examples/editflow/llada/adapt.py \
--lora True
- 8 GPUs (FSDP):
accelerate launch \
--config_file scripts/accelerate_configs/fsdp.yaml \
examples/editflow/llada/adapt.py
Slurm users
# Note: run `mkdir logs` before running sbatch; and adjust
# `partition` and `quotatype` in `scripts/train.slurm.sh` for your cluster.
------------
- 1 Node, 8 GPUs (FSDP):
sbatch --gres=gpu:8 scripts/train.slurm.sh \
--accelerate_config "fsdp" \
--script_path "examples/editflow/llada/adapt.py"
- 2 Nodes, 16 GPUs (FSDP):
sbatch --nodes=2 --gres=gpu:8 scripts/train.slurm.sh \
--accelerate_config "fsdp" \
--script_path "examples/editflow/llada/adapt.py"
"""
from dataclasses import dataclass
import torch
import transformers
import dllm
from examples.editflow import sft as editflow_sft
@dataclass
class ModelArguments(editflow_sft.ModelArguments):
model_name_or_path: str = "GSAI-ML/LLaDA-8B-Instruct"
lm_head_key: str = "model.transformer.ff_out"
init_editflow_from_src: bool = True
@dataclass
class DataArguments(editflow_sft.DataArguments):
dataset_args: str = "allenai/tulu-3-sft-mixture[train:10000,test:1000]"
@dataclass
class TrainingArguments(editflow_sft.TrainingArguments):
output_dir: str = (
"models/EditFlow-LLaDA-8B-Instruct-Adapt/tulu-3-sft-mixture[train:10000,test:1000]"
)
if __name__ == "__main__":
# ----- Argument parsing -------------------------------------------------------
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
dllm.utils.initial_training_setup(model_args, data_args, training_args)
# Create EditFlow model (bf16 init on CUDA)
ef_cfg = dllm.pipelines.editflow.EditFlowLLaDAConfig.from_pretrained(
model_args.model_name_or_path
)
with dllm.utils.init_device_context_manager():
model = transformers.AutoModel.from_config(ef_cfg, dtype=torch.bfloat16)
# Initialize EditFlow model from the src model: copies backbone & clones lm_head
if model_args.init_editflow_from_src:
src_model = transformers.AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path, dtype=torch.bfloat16
)
dllm.pipelines.editflow.utils.init_editflow_from_src(
model, src_model, lm_head_key=model_args.lm_head_key
)
del src_model
model = dllm.utils.load_peft(model, model_args)
editflow_sft.train(
model_args=model_args,
data_args=data_args,
training_args=training_args,
model=model,
)