Files
MIDIFoundationModel/dllm/examples/editflow/sft.py
2025-11-27 15:44:17 +08:00

193 lines
6.9 KiB
Python

import os
from functools import partial
from dataclasses import dataclass, field
import transformers
import accelerate
import dllm
from dllm.pipelines import editflow
logger = dllm.utils.get_default_logger(__name__)
@dataclass
class ModelArguments(dllm.utils.ModelArguments):
model_name_or_path: str = None # overwrite this
lm_head_key: str = field(
default=None,
metadata={
"help": (
"The key to the `lm_head` in the source model for initializing operation heads in the EditFlow model. "
"Overwrite this when `init_editflow_from_src` = True"
)
},
)
init_editflow_from_src: bool = field(
default=True,
metadata={
"help": "Whether to initialize EditFlow model from the source model."
},
)
init_editflow_from_editflow: bool = False
@dataclass
class DataArguments(dllm.utils.DataArguments):
dataset_args: str = "tatsu-lab/alpaca"
load_preprocessed_data: bool = False
mask_prompt_loss: bool = field(
default=True,
metadata={"help": "Whether to mask the loss on the prompt tokens"},
)
@dataclass
class TrainingArguments(dllm.utils.TrainingArguments):
output_dir: str = None # overwrite this
per_device_train_batch_size: int = 2
per_device_eval_batch_size: int = 2
learning_rate: float = 5e-5
# EditFlow specific args
scheduler_cls: str = field(
default="LinearKappaScheduler",
metadata={
"help": (
"The scheduler class controlling κ(t). "
"Available options: see `dllm/utils/schedulers/kappa.py`"
)
},
)
normalize_per_position: bool = field(
default=True,
metadata={"help": "Whether to normalize the loss per position."},
)
max_w: float = field(
default=20.0,
metadata={"help": "The maximum weight (κ'(t) / (1 - κ(t))) for the loss."},
)
x0_sampler: str = field(
default="masks[length:128]",
metadata={
"help": (
"Choose the x0 sampler. "
"Available options: see `dllm/pipelines/editflow/utils.py`"
)
},
)
def sft_map_fn(row, *, tokenizer, mask_prompt_loss: bool = True) -> dict:
# - `input_ids`` = prompt + response
# - `prompt_len` marks the prompt span to EXCLUDE from loss.
# (Remove prompt_len to train on all tokens—if so, ensure a BOS is prepended.)
prompt_response_tokens = tokenizer.apply_chat_template(
row["messages"],
tokenize=True,
add_generation_prompt=False,
)
if mask_prompt_loss:
prompt_tokens = tokenizer.apply_chat_template(
row["messages"][:-1],
tokenize=True,
add_generation_prompt=True,
)
return {
"input_ids": prompt_response_tokens,
"prompt_len": len(prompt_tokens),
}
else:
# When training on all tokens, prepend a BOS token (if missing)
# so the model can insert to the left of the very first token.
if prompt_response_tokens[0] != tokenizer.bos_token_id:
prompt_response_tokens = [tokenizer.bos_token_id] + prompt_response_tokens
return {"input_ids": prompt_response_tokens}
def train(
model_args: ModelArguments,
data_args: DataArguments,
training_args: TrainingArguments,
ef_config_cls: type[transformers.PretrainedConfig],
):
# necessary when batch does not contain "labels" field
training_args.label_names = []
# necessary when batch contains customized fields
training_args.remove_unused_columns = False
dllm.utils.print_args_main(model_args, data_args, training_args)
dllm.utils.initial_training_setup(model_args, data_args, training_args)
# ----- Load EditFlow Model ----------------------------------------------------
if model_args.init_editflow_from_editflow:
model = dllm.utils.get_model(model_args=model_args)
else:
ef_cfg = ef_config_cls.from_pretrained(
model_args.model_name_or_path,
dtype=model_args.dtype,
attn_implementation=model_args.attn_implementation,
)
with dllm.utils.init_device_context_manager():
model = transformers.AutoModel.from_config(ef_cfg)
if model_args.init_editflow_from_src:
# Load src model config & weights (bf16 on CUDA) for intializing EditFlow model
src_model = transformers.AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path, dtype=model_args.dtype
)
# Initialize EditFlow model from the src model: copies backbone & clones lm_head
editflow.utils.init_editflow_from_src(
model, src_model, lm_head_key=model_args.lm_head_key
)
del src_model
model = dllm.utils.load_peft(model, model_args)
def _no_flops(*args, **kwargs):
return 0.0
model.floating_point_ops = _no_flops
# ----- Tokenizer --------------------------------------------------------------
tokenizer = dllm.utils.get_tokenizer(model_args=model_args)
# ----- Dataset ----------------------------------------------------------------
with accelerate.PartialState().local_main_process_first():
dataset = dllm.data.load_sft_dataset(
data_args.dataset_args,
load_preprocessed_data=data_args.load_preprocessed_data,
)
if not data_args.load_preprocessed_data:
map_fn = partial(
sft_map_fn,
tokenizer=tokenizer,
mask_prompt_loss=data_args.mask_prompt_loss,
)
dataset = dataset.map(
map_fn,
num_proc=data_args.num_proc,
desc="Mapping dataset to SFT format",
)
# truncate / filter long sequences if needed
dataset = dllm.utils.post_process_dataset(dataset, data_args)
# ----- Training --------------------------------------------------------------
accelerate.PartialState().wait_for_everyone()
logger.info("Start training...")
trainer = editflow.EditFlowTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset["train"],
eval_dataset=dataset.get("test", None),
args=training_args,
data_collator=editflow.utils.EditFlowCollator(
tokenizer=tokenizer, x0_sampler=training_args.x0_sampler
),
scheduler=dllm.core.schedulers.make_kappa_scheduler(
training_args.scheduler_cls
),
normalize_per_position=training_args.normalize_per_position,
max_w=training_args.max_w,
)
trainer.train()
trainer.save_model(os.path.join(training_args.output_dir, "checkpoint-final"))
trainer.processing_class.save_pretrained(
os.path.join(training_args.output_dir, "checkpoint-final")
)