175 lines
6.2 KiB
Python
175 lines
6.2 KiB
Python
"""
|
|
Local users
|
|
------------
|
|
- 1 GPU (4bit quant & LoRA, useful for testing):
|
|
accelerate launch \
|
|
--config_file scripts/accelerate_configs/ddp.yaml --num_processes 1 \
|
|
examples/llada/pt.py \
|
|
--load_in_4bit True --lora True
|
|
|
|
- 8 GPUs (FSDP):
|
|
accelerate launch \
|
|
--config_file scripts/accelerate_configs/fsdp.yaml \
|
|
examples/llada/pt.py
|
|
|
|
Slurm users
|
|
# Note: run `mkdir logs` before running sbatch; and adjust
|
|
# `partition` and `quotatype` in `scripts/train.slurm.sh` for your cluster.
|
|
------------
|
|
- 24 Nodes, 192 GPUs (FSDP):
|
|
sbatch --nodes=24 --gres=gpu:8 scripts/train.slurm.sh \
|
|
--accelerate_config "fsdp" \
|
|
--script_path "examples/llada/pt.py"
|
|
"""
|
|
|
|
import os
|
|
import functools
|
|
from dataclasses import dataclass, field
|
|
|
|
import torch
|
|
import transformers
|
|
import accelerate
|
|
|
|
import dllm
|
|
|
|
logger = dllm.utils.get_default_logger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments(dllm.utils.ModelArguments):
|
|
# Uses only the configuration from model_name_or_path to initialize the model from scratch
|
|
model_name_or_path: str = (
|
|
"GSAI-ML/LLaDA-8B-Base" # "inclusionAI/LLaDA-MoE-7B-A1B-Base"
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataArguments(dllm.utils.DataArguments):
|
|
dataset_args: str = "mlfoundations/dclm-baseline-1.0[train:10_000_000,test:10_000]"
|
|
text_field: str = "text"
|
|
streaming: bool = True
|
|
drop_tail: bool = True
|
|
insert_eos: bool = field(
|
|
default=True,
|
|
metadata={
|
|
"help": "False when adjacent samples from the datasets are semantically coherent."
|
|
},
|
|
)
|
|
random_length_ratio: float = field(
|
|
default=0.01,
|
|
metadata={
|
|
"help": (
|
|
"The probability of randomly cut sequences during training. "
|
|
"See https://github.com/ML-GSAI/LLaDA/blob/main/GUIDELINES.md#pre-training for reference."
|
|
)
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class TrainingArguments(dllm.utils.TrainingArguments):
|
|
output_dir: str = (
|
|
"models/LLaDA-8B-PT/dclm-baseline-1.0[train:10_000_000,test:10_000]"
|
|
)
|
|
learning_rate: float = 3e-4
|
|
max_steps: int = 2_000
|
|
per_device_train_batch_size: int = 4
|
|
gradient_accumulation_steps: int = 4
|
|
eval_steps: float = 0.05
|
|
save_steps: float = 0.05
|
|
|
|
|
|
def train():
|
|
# ----- Argument parsing -------------------------------------------------------
|
|
parser = transformers.HfArgumentParser(
|
|
(ModelArguments, DataArguments, TrainingArguments)
|
|
)
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
# necessary for streaming dataset
|
|
if data_args.streaming:
|
|
training_args.accelerator_config.dispatch_batches = False
|
|
dllm.utils.print_args_main(model_args, data_args, training_args)
|
|
dllm.utils.initial_training_setup(model_args, data_args, training_args)
|
|
|
|
# ----- Model ------------------------------------------------------------------
|
|
# initialize model weights from scratch
|
|
config = transformers.AutoConfig.from_pretrained(model_args.model_name_or_path)
|
|
with dllm.utils.init_device_context_manager():
|
|
model = transformers.AutoModel.from_config(
|
|
config, dtype=torch.bfloat16, init_params=True
|
|
)
|
|
|
|
# ----- Tokenizer --------------------------------------------------------------
|
|
tokenizer = dllm.utils.get_tokenizer(model_args=model_args)
|
|
# ----- Optional PEFT: LoRA ----------------------------------------------------
|
|
model = dllm.utils.load_peft(model=model, model_args=model_args)
|
|
|
|
# ----- Dataset ----------------------------------------------------------------
|
|
with accelerate.PartialState().local_main_process_first():
|
|
dataset = dllm.data.load_pt_dataset(
|
|
data_args.dataset_args,
|
|
streaming=data_args.streaming,
|
|
)
|
|
dataset = dataset.map(
|
|
functools.partial(
|
|
dllm.utils.tokenize_and_group,
|
|
tokenizer=tokenizer,
|
|
text_field=data_args.text_field,
|
|
seq_length=data_args.max_length,
|
|
insert_eos=data_args.insert_eos,
|
|
drop_tail=data_args.drop_tail,
|
|
),
|
|
batched=True,
|
|
remove_columns=dataset["train"].column_names,
|
|
**({} if data_args.streaming else {"num_proc": data_args.num_proc}),
|
|
**({} if data_args.streaming else {"desc": "Mapping dataset to PT format"}),
|
|
)
|
|
if data_args.streaming:
|
|
dataset = dataset.shuffle(seed=training_args.seed)
|
|
|
|
# ----- Training --------------------------------------------------------------
|
|
@dataclass
|
|
class LLaDAPTCollator(transformers.DataCollatorForSeq2Seq):
|
|
# Reference: https://github.com/ML-GSAI/LLaDA/blob/main/GUIDELINES.md#pre-training
|
|
# By default, 1% of the pre-training data are truncated to a random length
|
|
random_length_ratio: float = 0.01
|
|
|
|
def __call__(self, features, return_tensors=None):
|
|
outputs = super().__call__(features, return_tensors)
|
|
if torch.rand(1) < self.random_length_ratio:
|
|
random_length = torch.randint(
|
|
1, outputs["input_ids"].shape[1] + 1, (1,)
|
|
)
|
|
for key in ["input_ids", "labels", "attention_mask"]:
|
|
if key in outputs:
|
|
outputs[key] = outputs[key][:, :random_length]
|
|
# Check if attention_mask is all ones and set it to None
|
|
if torch.all(outputs["attention_mask"] == 1):
|
|
outputs.pop("attention_mask")
|
|
return outputs
|
|
|
|
accelerate.PartialState().wait_for_everyone()
|
|
logger.info("Start training...")
|
|
trainer = dllm.core.trainers.MDLMTrainer(
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
train_dataset=dataset["train"],
|
|
eval_dataset=dataset.get("test", None),
|
|
args=training_args,
|
|
data_collator=LLaDAPTCollator(
|
|
tokenizer,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
random_length_ratio=data_args.random_length_ratio,
|
|
),
|
|
)
|
|
trainer.train()
|
|
trainer.save_model(os.path.join(training_args.output_dir, "checkpoint-final"))
|
|
trainer.processing_class.save_pretrained(
|
|
os.path.join(training_args.output_dir, "checkpoint-final")
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
train()
|