65 lines
3.0 KiB
YAML
65 lines
3.0 KiB
YAML
defaults:
|
|
# - nn_params: nb8_embSum_NMT
|
|
# - nn_params: remi8
|
|
# - nn_params: nb8_embSum_diff_t2m_150M_finetunning
|
|
- nn_params: nb8_embSum_diff_t2m_150M_pretrainingv2
|
|
# - nn_params: nb8_embSum_subPararell
|
|
# - nn_params: nb8_embSum_diff_t2m_150M
|
|
|
|
# - nn_params: nb8_embSum_subFeedForward
|
|
# - nn_params: nb8_embSum_diff
|
|
# nn_params: nb8_SA_diff
|
|
# - nn_params: nb8_embSum_diff_main12head16dim512_ave
|
|
# - nn_params: nb8_embSum_NMT_main12_head_16_dim512
|
|
# - nn_params: remi8_main12_head_16_dim512
|
|
# - nn_params: nb5_embSum_diff_main12head16dim768_sub3
|
|
|
|
dataset: LakhClean # Pop1k7, Pop909, SOD, LakhClean,PretrainingDataset FinetuneDataset
|
|
captions_path: dataset/midicaps/train_set.json
|
|
|
|
# dataset: SymphonyNet_Dataset # Pop1k7, Pop909, SOD, LakhClean
|
|
# captions_path: dataset/symphonyNet/syd-caption.json
|
|
|
|
use_ddp: True # True, False | distributed data parallel
|
|
use_fp16: True # True, False | mixed precision training
|
|
use_diff: True # True,use diffusion in subdecoder
|
|
diff_steps: 8 # number of diffusion steps
|
|
use_dispLoss: True
|
|
lambda_weight: 0.5
|
|
tau: 0.5
|
|
|
|
train_params:
|
|
device: cuda
|
|
batch_size: 3
|
|
grad_clip: 1.0
|
|
num_iter: 300000 # total number of iterations
|
|
num_cycles_for_inference: 10 # number of cycles for inference, iterations_per_validation_cycle * num_cycles_for_inference
|
|
num_cycles_for_model_checkpoint: 1 # number of cycles for model checkpoint, iterations_per_validation_cycle * num_cycles_for_model_checkpoint
|
|
iterations_per_training_cycle: 10 # number of iterations for logging training loss
|
|
iterations_per_validation_cycle: 5000 # number of iterations for validation process
|
|
input_length: 3072 # input sequence length3072
|
|
# you can use focal loss, it it's not used, set focal_gamma to 0
|
|
focal_alpha: 1
|
|
focal_gamma: 0
|
|
# learning rate scheduler: 'cosinelr', 'cosineannealingwarmuprestarts', 'not-using', please check train_utils.py for more details
|
|
scheduler : cosinelr
|
|
initial_lr: 0.00005
|
|
decay_step_rate: 0.8 # means it will reach its lowest point at decay_step_rate * total_num_iter
|
|
num_steps_per_cycle: 20000 # number of steps per cycle for 'cosineannealingwarmuprestarts'
|
|
warmup_steps: 2000 #number of warmup steps
|
|
max_lr: 0.00015
|
|
gamma: 0.6 # the decay rate for 'cosineannealingwarmuprestarts'
|
|
# Distributed Data Parallel
|
|
world_size: 5 # 0 means no distributed training
|
|
gradient_accumulation_steps: 4 # 1 means no gradient accumulation
|
|
inference_params:
|
|
num_uncond_generation: 1 # number of unconditional generation
|
|
num_cond_generation: 3 # number of conditional generation
|
|
data_params:
|
|
first_pred_feature: pitch # compound shifting for NB only, choose the target sub-token (remi and cp are not influenced by this argument)
|
|
split_ratio: 0.998 # train-validation-test split ratio
|
|
aug_type: pitch # random, null | pitch and chord augmentation type
|
|
general:
|
|
debug: False
|
|
make_log: True # True, False | update the log file in wandb online to your designated project and entity
|
|
infer_and_log: True # True, False | inference and log the results |